SQLiteC++ (SQLiteCpp) is a lean and easy to use C++ SQLite3 wrapper.
SQLiteC++ offers an encapsulation around the native C APIs of SQLite, with a few intuitive and well documented C++ classes.
Copyright (c) 2012-2023 Sébastien Rombauts (sebastien.rombauts@gmail.com)
Distributed under the MIT License (MIT) (See accompanying file LICENSE.txt or copy at http://opensource.org/licenses/MIT)
As stated by the MIT License, you are welcome to reuse, modify, and redistribute the SQLiteCpp source code the way you want it to, be it a git submodule, a subdirectory, or a selection of some source files.
I would love a mention in your README, a web link to the SQLite repository, and a mention of the author, but none of those are mandatory.
SQLite is a library that implements a serverless transactional SQL database engine. It is the most widely deployed SQL database engine in the world. All of the code and documentation in SQLite has been dedicated to the public domain by the authors. http://www.sqlite.org/about.html
It is designed using the Resource Acquisition Is Initialization (RAII) idiom (see http://en.wikipedia.org/wiki/Resource_Acquisition_Is_Initialization), and throwing exceptions in case of SQLite errors (except in destructors, where assert() are used instead). Each SQLiteC++ object must be constructed with a valid SQLite database connection, and then is always valid until destroyed.
Now requires a C++11 compiler. Use branch sqlitecpp-2.x for latest pre-C++11 developments.
Developments and tests are done under the following OSs:
And the following IDEs/Compilers
SQLITE_ENABLE_COLUMN_METADATA
macro defined (see http://www.sqlite.org/compile.html#enable_column_metadata).To use this wrapper, you need to add the SQLiteC++ source files from the src/ directory in your project code base, and compile/link against the sqlite library.
The easiest way to do this is to add the wrapper as a library. The “CMakeLists.txt” file defining the static library is provided in the root directory, so you simply have to add_subdirectory(SQLiteCpp) to you main CMakeLists.txt and link to the “SQLiteCpp” wrapper library.
Example for Linux:
add_subdirectory(${CMAKE_CURRENT_LIST_DIR}/thirdparty/SQLiteCpp)
add_executable(main src/main.cpp)
target_link_libraries(main
SQLiteCpp
sqlite3
pthread
dl
)
Thus this SQLiteCpp repository can be directly used as a Git submodule. See the SQLiteCpp_Example side repository for a standalone “from scratch” example.
Under Debian/Ubuntu/Mint Linux, you can install the libsqlite3-dev package if you don’t want to use the embedded sqlite3 library.
Use git to clone the repository. Then init and update submodule “googletest”.
git clone https://github.com/SRombauts/SQLiteCpp.git
cd SQLiteCpp
git submodule init
git submodule update
Alternatively, you can build and install SQLiteCpp using vcpkg dependency manager:
```bash or powershell git clone https://github.com/Microsoft/vcpkg.git cd vcpkg ./bootstrap-vcpkg.sh ./vcpkg integrate install ./vcpkg install sqlitecpp
The SQLiteCpp port in vcpkg is kept up to date by Microsoft team members and community contributors. If the version is out of date, please [create an issue or pull request](https://github.com/Microsoft/vcpkg) on the vcpkg repository.
#### Using SQLiteCpp on a system-wide installation
If you installed this package to your system, a `SQLiteCppConfig.cmake` file will be generated & installed to your system.
This file lets you link against the SQLiteCpp library for use in your Cmake project.
Here's an example of using this in your CMakeLists.txt
```cmake
# You can optionally define a minimum version in this call
find_package(SQLiteCpp REQUIRED)
# For this example, lets say you created an target with add_executable (or add_library) called "my_target"
# You can optionally declare PUBLIC or PRIVATE linkage here, depending on your needs.
target_link_libraries(my_target PRIVATE SQLiteCpp)
A CMake configuration file is also provided for multi-platform support and testing.
Typical generic build for MS Visual Studio under Windows (from build.bat):
mkdir build
cd build
cmake .. # cmake .. -G "Visual Studio 16 2019" # for Visual Studio 2019
@REM Generate a Visual Studio solution for latest version found
cmake -DSQLITECPP_BUILD_EXAMPLES=ON -DSQLITECPP_BUILD_TESTS=ON ..
@REM Build default configuration (ie 'Debug')
cmake --build .
@REM Build and run tests
ctest --output-on-failure
Generating the Linux Makefile, building in Debug and executing the tests (from build.sh):
mkdir Debug
cd Debug
# Generate a Makefile for GCC (or Clang, depanding on CC/CXX envvar)
cmake -DSQLITECPP_BUILD_EXAMPLES=ON -DSQLITECPP_BUILD_TESTS=ON ..
# Build (ie 'make')
cmake --build .
# Build and run unit-tests (ie 'make test')
ctest --output-on-failure
Under Linux, if you get multiple linker errors like “undefined reference to sqlite3_xxx”, it’s that you lack the “sqlite3” library: install the libsqlite3-dev package.
If you get a single linker error “Column.cpp: undefined reference to sqlite3_column_origin_name”,
it’s that your “sqlite3” library was not compiled with
the SQLITE_ENABLE_COLUMN_METADATA
macro defined (see http://www.sqlite.org/compile.html#enable_column_metadata).
You can:
option(SQLITE_ENABLE_COLUMN_METADATA "Enable Column::getColumnOriginName(). Require support from sqlite3 library." ON)
in CMakeFiles.txt (or other build system scripts)option(SQLITECPP_INTERNAL_SQLITE "Add the internal SQLite3 source to the project." ON)
in CMakeFiles.txtThis project is continuously tested under Ubuntu Linux with the gcc and clang compilers using the Travis CI community service with the above CMake building and testing procedure. It is also tested in the same way under Windows Server 2012 R2 with Visual Studio 2013 compiler using the AppVeyor continuous integration service.
Detailed results can be seen online:
SQLite supports three modes of thread safety, as describe in “SQLite And Multiple Threads”: see http://www.sqlite.org/threadsafe.html
This SQLiteC++ wrapper does no add any locks (no mutexes) nor any other thread-safety mechanism above the SQLite library itself, by design, for lightness and speed.
Thus, SQLiteC++ naturally supports the “Multi Thread” mode of SQLite: “In this mode, SQLite can be safely used by multiple threads provided that no single database connection is used simultaneously in two or more threads.”
But SQLiteC++ does not support the fully thread-safe “Serialized” mode of SQLite, because of the way it shares the underlying SQLite precompiled statement in a custom shared pointer (See the inner class “Statement::Ptr”).
Run valgrind to search for memory leaks in your application, the SQLiteCpp wrapper, or the sqlite3 library. Execute the following command under Unix like OS (Linux, MacOS or WSL2/Ubuntu under Windows Subsystem for Linux):
valgrind --leak-check=full --show-leak-kinds=all --track-origins=yes --verbose build/SQLiteCpp_example1
or uncoment the line at the end of build.sh
try
{
// Open a database file
SQLite::Database db("example.db3");
// Compile a SQL query, containing one parameter (index 1)
SQLite::Statement query(db, "SELECT * FROM test WHERE size > ?");
// Bind the integer value 6 to the first parameter of the SQL query
query.bind(1, 6);
// Loop to execute the query step by step, to get rows of result
while (query.executeStep())
{
// Demonstrate how to get some typed column value
int id = query.getColumn(0);
const char* value = query.getColumn(1);
int size = query.getColumn(2);
std::cout << "row: " << id << ", " << value << ", " << size << std::endl;
}
}
catch (std::exception& e)
{
std::cout << "exception: " << e.what() << std::endl;
}
try
{
SQLite::Database db("transaction.db3", SQLite::OPEN_READWRITE|SQLite::OPEN_CREATE);
db.exec("DROP TABLE IF EXISTS test");
// Begin transaction
SQLite::Transaction transaction(db);
db.exec("CREATE TABLE test (id INTEGER PRIMARY KEY, value TEXT)");
int nb = db.exec("INSERT INTO test VALUES (NULL, \"test\")");
std::cout << "INSERT INTO test VALUES (NULL, \"test\")\", returned " << nb << std::endl;
// Commit transaction
transaction.commit();
}
catch (std::exception& e)
{
std::cout << "exception: " << e.what() << std::endl;
}
Exceptions shall not be used in destructors, so SQLiteC++ uses SQLITECPP_ASSERT() to check for errors in destructors. If you don’t want assert() to be called, you have to enable and define an assert handler as shown below, and by setting the flag SQLITECPP_ENABLE_ASSERT_HANDLER when compiling the lib.
#ifdef SQLITECPP_ENABLE_ASSERT_HANDLER
namespace SQLite
{
/// definition of the assertion handler enabled when SQLITECPP_ENABLE_ASSERT_HANDLER is defined in the project (CMakeList.txt)
void assertion_failed(const char* apFile, const long apLine, const char* apFunc, const char* apExpr, const char* apMsg)
{
// Print a message to the standard error output stream, and abort the program.
std::cerr << apFile << ":" << apLine << ":" << " error: assertion failed (" << apExpr << ") in " << apFunc << "() with message \"" << apMsg << "\"\n";
std::abort();
}
}
#endif
The most efficient way to help and contribute to this wrapper project is to use the tools provided by GitHub:
You can also email me directly, I will try to answer questions and requests whenever I get the time for it.
The source code use the CamelCase naming style variant where:
See bellow a short comparison of other wrappers done at the time of writing: